

Mercury Speciation in Patrick Bayou

Presented by David Keith

September 5, 2012

- Purpose:
 - Provide a brief summary of the methods used to estimate the proportion of methylmercury in bulk sediment
- Partitioning theory based on:
 - Concentration of MeHg in sediment and porewater
 - Ratio of total organic carbon to dissolved organic carbon

Methyl mercury is an organomettalic cation:

$$CH_3Hg^+$$

- Methylmercury is typically associated with:
 - sediment organic matter (SOM)
 - dissolved organic matter (DOM)
- Partitioning in solid phase and porewater can be described as:

$$(SOM)H + CH_3Hg^+ \leftrightarrow (SOM)CH_3Hg + H^+$$

 $(DOM)H + CH_3Hg^+ \leftrightarrow (DOM)CH_3Hg + H^+$

 It is generally accepted that ratios of SOM to TOC and DOM to DOC are equivalent:

$$SOM:TOC \cong DOM:DOC$$

Thus, we can substitute TOC and DOC into the previous equilibrium partitioning equations

$$(TOC)H + CH_3Hg^+ \leftrightarrow (TOC)CH_3Hg + H^+$$

 $(DOC)H + CH_3Hg^+ \leftrightarrow (DOC)CH_3Hg + H^+$

• Equilibrium constants (K) are equivalent for both equations:

$$A + B \leftrightarrow C + D$$

$$K = \frac{[C][D]}{[A][B]} = 10^{6.5}$$

Therefore:

$$\frac{[(TOC)CH_3Hg][H^+]}{[(TOC)H][CH_3Hg^+]} = \frac{[(DOC)CH_3Hg][H^+]}{[(DOC)H][CH_3Hg^+]}$$

• Rearranging and canceling like terms:

$$(TOC)CH_3Hg = (DOC)CH_3Hg \times \frac{(TOC)H}{(DOC)H}$$

- We have site-specific, empirical data for TOC, DOC, and MeHg_{PW}
 - MeHg_{SD} can be calculated using this data and previous equation
- Data was collected at 11 stations within the Site
 - Pore water mercury data and DOC were collected from 0-20 cm in 2 cm intervals
 - First five intervals (0-10 cm) was averaged for each location
 - Bulk sediment TOC was analyzed from 0-11 cm from nearest surface grab

Location	MeHg _{pw} (ng/L)		DOC_pw	TOC _{sd}	<mark>MeHg_{sed}</mark> (ng/kg)	
	Average	Standard Deviation	(ug/L)	(%)	Average	Standard Deviation
PB-006A	2.47	1.48	20,000	1.48	1,828	1,095
PB-006B	4.7	1.68	19,000	1.48	3,661	1,309
PB-023	1.27	0.73	22,000	0.64	369	212
PB-024	3.46	1.62	24,000	0.92	1,326	621
PB-036	9.51	5.31	42,000	4.36	9,872	5,512
PB-044	0.99	0.42	12,000	1.26	1,040	441
PB-046	3.28	2.35	26,000	1.81	2,283	1,636
PB-052	0.32	0.27	26,000	5.12	630	532
PB-053	3.05	1.58	57,000	2.06	1,102	571
PB-059.1	0.23	0.07	50,000	1.09	51	16
PB-059.2	0.23	0.07	50,000	1	46	14

- Compared MeHg_{SD} estimates to Total Hg (Hg_T) measured in bulk sediments
 - $MeHg_{SD}$ represented a small fraction of Hg_T ; less than 0.2% for all sample locations
 - Not unexpected result given the relatively high sediment sulfides (i.e., AVS) observed in sediment
- Assumed an conservative average of 1% of total mercury measured in bulk sediment is in methylated form for wildlife exposure assessment; remaining 99% inorganic mercury

 $Hg_T = 10 \text{ mg/kg}$ $MeHg_{SD} = 1 \text{ mg/kg}$ Inorganic Hg = 9 mg/kg

References

- Bessinger, et al. In Press. Reactive transport modeling of subaqueous sediment caps and implications for the long-term fate of arsenic, mercury, and methylmercury. Aquatic Geochemistry.
- Åkerblom, S., M. Meili, L. Bringmark, K. Johansson, D.B. Kleja, and B. Bergkvist. 2008. Partitioning of Hg between solid and dissolved organic matter in the humus layer of boreal forests. Water Air Soil Pollut. 189:239-252.
- Skyllberg, U., J. Qian, W. Frech, K. Xia, and W. F. Bleam (2003), Distribution of mercury, methyl mercury and organic sulfur species in soil, soil solution and stream of a boreal forest catchment, Biogeochemistry, 64, 53-76, doi:10.1023/A:1024904502633.
- Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. J Geophys Res Biogeosci 113:536-554. doi:G00c0310.1029/2008jg000745

